

- specially designed for the food and beverage industry
- non-adhesive
- -overload resistance (for short-time) 130 °C max. temp.:

max. pressure: 16 bar

CIP-able

- materials suitable for food and bever-
- no on-site adjustment necessary
- AS-interface-bus-version

Response sensitivity. 0.1 µs/cm

G□A	□" NPT
LPL 0.1-G2S-E2	LPL 0.1-N2S-E2
LPL 0.1-G2S-E3	LPL 0.1-N2S-E3
LPL 0.1-G3S-E2	LPL 0.1-N3S-E2
LPL 0.1-G3S-E3	LPL 0.1-N3S-E3
LPL 0.1-G2S-B3	LPL 0.1-N2S-B3
LPL 0.1-G3S-B3	LPL 0.1-N3S-B3

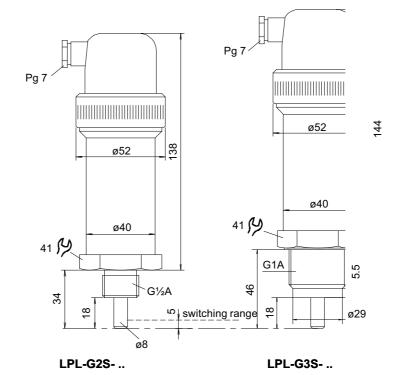
Response sensitivity. 100 µs/cm

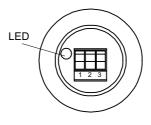
G□A	□" NPT
LPL 100-G2S-E2	LPL 100-N2S-E2
LPL 100-G2S-E3	LPL 100-N2S-E3
LPL 100-G3S-E2	LPL 100-N3S-E2
LPL 100-G3S-E3	LPL 100-N3S-E3

Function principle

The measuring electrode of the probe creates a field to the vessel wall, that will be changed by the liquid medium. The internal electronics detects the change and generates the switching signal. The special construction of the probe and the smart evaluation unit provide fully reproducable switching points even with adhesive media.

Mounting instruction

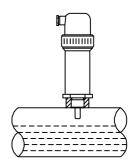

The mounting position does not matter for limit value detection.

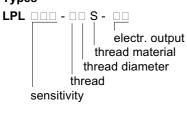

For dry-run protection the probe has to be mounted from the top into the controlled pipeline. This is also true for pipes with beverages that should be protected from falling levels.

Special over load resistance

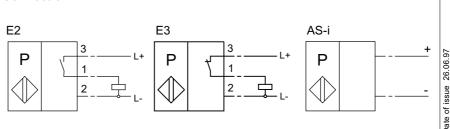
The used materials allow for a short time (< 30 min) pressures (< 16 bar) and temperatures (≈130 °C). Those are common in the food industry during cleaning processes of the system.

Dimensions / versions




Please note

In the mounted position the electrode has to stand free into the pipe.


The minimum distance to neighbouring threads resp. pipeline elements has to be \geq 5 mm.

Types

Date of issue

_			
Tec	hni	cal	data

Response sensitivity

LPL 0.1

LPL 100

Supply

Supply voltage U_B Load current J

Output

Switching function

Current

Short-circuit current

Indicator

Switching state

Environmental conditions

Temperature

Process conditions

Temperature permanent

short-time (max.30 min.)

Pressure

Electrical connection

Terminal plugs Cable glands

Process connection

Electrode

LPL□□-G2S

LPL□□-G3S

LPL -N2S LPL□□-N3S

Protection class acc. to DIN 40 050

Housing material

Terminal box Thread

AS-Interface-Version

Supply

Indicators operative

Switching state

Accessories

LPL-Z71

conductance of the liquid $\geq 0.1 \mu S$ / cm conductance of the liquid $\geq 100 \mu S$ / cm, prefed for KEG-systems

DC 24 V (± 25%)

≤ 30 mA

pnp (positive switched) make switch / break switch max. 500 mA, short-circuit proof

≤ 1.5 A

LED, red

+5 °C ... +50 °C (278 K ... 323 K)

+5 °C ... +85 °C (278 K ... 358 K)

≤ 130 °C (393 K)

≤ 16 bar

max. 2.5 mm² plastic, Pg 7

PVDF

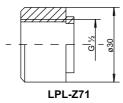
G1/2A, stainless steel 304 / 304 S 15

G1A, stainless steel 304 / 304 S 15

 $\frac{1}{2}$ " NPT, stainless steel 304 / 304 S 15

1" NPT, stainless steel 304 / 304 S 15

IP 67


plastics, transparent

2-wire-lead to the master

LED, green

LED, red

Coupling sleeve, thread G 1/2A, stainless steel

This device may be used with any circuit, if this circuit complies with the connection values of the switching element.

Date of issue 26.06.97